Project SENSE: Review of 7 Years of Sensor-Based N Management in Irrigated & Rainfed Corn Production

Joe D. Luck

Associate Professor, Biological Systems Engineering Associate Director, Eastern NE Research, Extension & Education Center <u>iluck2@unl.edu</u> @joeluck_unl University of Nebraska-Lincoln

NEBRASKA EXTENSION DIGITAL AGRICULTURE

Vegetation Indices:

• Vegetation indices quantify crop reflectance based on reflectance at particular wavelengths

Example of NDRE

 Below shows how corn 'looks' with different N supply, we can quantify this variability according to NDRE:

Going from VIs to N Recommendations...

- Several steps in the process, for real-time application:
 - Selection of sensor system
 - This typically sets algorithm to be used
 - Establish base N rates around planting (with high N reference strips)
 - Determine Optimum N Rate (Nopt), considering economics!
 - Preferred time of application window (V8-V12)
 - Determine reference NDRE for Sufficiency Index (SI)
 - · Proceed with real-time sensing & N application

Active Systems and Algorithm

- Sensor selection will determine VI to be used as well as algorithm
- For corn in NE, two algorithms have been developed:
- Solari

 $N (lb/ac) = 317 \cdot \sqrt{0.97 - SI}$

• Holland-Schepers (OptRx system)

$$N (lb/ac) = (N_{OPT} - N_{PreFert} - N_{CRD}) \cdot \sqrt{\frac{(1-S)}{ASU}}$$

Topcon (Yara) CropSpec™

Trimble Greenseeker®

Ag Leader OptRx™

Estimating Nopt (economic EONR)

- Several methods exist... ٠
 - N Models (Maize-N, Adapt-N, Encirca, Fieldview, etc.) •

Timing for sensor-based N

- · Recommended practice is to apply a base rate of 75-100 lb-N/ac at or near planting
- In-season application would follow, targeting v8 to v12 growth stages
- Why?

Reference VI

•

- A reference value for 'healthy' (or non-N limited) corn is required for the SI calculation
 - Two methods exist for creating a reference VI:
 - High-N reference strip: apply 250 lb-N/ac base rate
 - Virtual reference strip: record NDRE values just prior to N application, select 95th percentile (automatic function in OptRx system)

Calculating the Sufficiency Index

- For real-time application, the system will store the reference VI
- The SI values are calculated on-the-go by dividing the 'target' (where you're applying) values by the one reference value

N Application in real-time

- Once we have the previous information, the system will apply the N algorithm in real-time
- For the Holland-Schepers algorithm, a N response curve might look something like this (note additional settings available to limit N):

- We have worked with over 80 growers in their fields with three different types of SENSE projects
- High clearance applicator in irrigated and rainfed fields
- Sensor-based fertigation
- These were some of the best growers out there in terms of NUE!

· Data analysis process:

• Average across all years show high potential for this technology!

and the state of the state of the state of the	Service Service	12 62
Five Year Average	SENSE	Grower
Total N rate (lb-N/ac)	159.3 B*	190.8 A
Yield (bu/ac)	216.9 B	218.0 A
Nitrogen Use Efficiency (lb-N/bu grain)	0.75 B	0.92 A
Partial Profitability (\$/ac) [@3.65/bu and \$0.65/lb-N]	\$693.17 A	\$676.44 B
Partial Profitability (\$/ac) [@3.15/bu and \$0.41/lb-N]	\$622.20 A	\$612.82 B

Sensors for Efficient N Use and Stewardship of the Environment

- Project SENSE Grower Meetings:
- Annual meeting with cooperating growers.
- At the final meeting, 50% of respondents indicated that they had reduced N rates or moved to split N application since interacting with Project SENSE.

Sub Field Analysis:

- Greatest difference in nitrogen rates between SENSE and grower treatments was found in sandy soil
- In these soils, growers applied greater amounts of nitrogen than the SENSE treatments

L			Dependent variable:		
L		I(Gr_Nrate_It	os_ac - (Tgt_Rate_N	+ Base_N))	
L		(1)	(2)	(3)	
L	Nopt Nrate Ibs_ac	-1.100	-0.546	-0.763***	
L		(0.423)	(0.471)	(0.178)	
L	GDD_P_SD_SENSE	0.114***	0.245**	0.025	1.1
L		(0.040)	(0.097)	(0.037)	1.1
L	refNDRE	3,452.270***		-598.867*	
		(1,055.308)	(0.000)	(338.173)	
L	SI	146.534	363.705	523.759	37
		(21.051)	(35.021)	(72.816)	
	TWI_SENSE1	-0.0001	-0.00001	-0.654	
	All a second second	10 00021	(0,0001)	(0.338)	
te	extioamy-sand	18.153			
		(5.575)			
Soil_textsandy-clay-loam		183.634**	80.695***	117.839***	
		(73.693)	(4.035)	(14.220)	
te	extsandy-loam	-4.973***	32.566	58.429***	
		(1.006)	(26.399)	(15,348)	
te	extsilt-loam	45.960***	79.441***	26.622**	
		(15.810)	(5.360)	(11.558)	
T	Soil_textsilty-clay-loam	-2.325	78.650	38.584	153
		(21.488)	(4.448)	(17.037)	
	Constant	-1,350.124**	-439.259""	-57.004	
		(524.129)	(178.800)	(158.272)	1
	Observations	10,256	6,198	20,688	
	R ²	0.904	0.965	0.811	
_	A discolor of FD2	0.004	0.005	0.044	

Sub Field Analysis:

NUE was greater in the SENSE treatments in sandy soils

		Dependent variable:	
		dNUE	
	(1)	(2)	(3)
GDD_P_SD_SENSE	-0.00004	-0.0001	-0.001
I textloamv-sand	-0.198***		
-	(0.025)		
il textsandy-clay-loam	-0.300***	-0.004	-0.022
- / /	(0.036)	(0.075)	(0 204)
oil textsandy-loam	0.076***	0.383***	0.757***
in_textsundy lounn	(0,000)	(0.120)	(0.061)
Soil_textsilty-clay			0.056
Soil textsilty-clay-loam	-0.566***	-0.189*	-0.050
	(0.037)	(0.111)	(0.152)
Nopt Nrate_lbs_ac	-0.006***	-0.007***	-0.007***
	(0.001)	(0.002)	(0.001)
Base_N	-0.008***	-0.009""	-0.005**
1	(0.001)	(0.004)	(0.003)
Constant	2.327***	2.663***	3.122***
	(0.179)	(0.898)	(0.445)
Observations	10,252	14,632	20,685
R ²	0.242	0.321	0.454
Adjusted R ²	0.241	0.321	0.454

Project SENSE – Rainfed Sites

- Project SENSE rainfed sites followed similar field-deployment methods
- Nine sites were deployed in 2019
 and 2020
- Average profitability was \$2.40/ac less using the in-season approach
- NUE was improved upon at each site; typically from less N applied
- Three grower-cooperators utilized inseason N management approaches
- Future work will include coulterinjected UAN starting in 2022

Sensor-based Fertigation Treatment Layout (Methodology/Process and Software are patent-pending)

Thank You!

jluck2@unl.edu

United States Department of Agriculture National Institute of Food and Agriculture

USDA

precisionagriculture.unl.edu cropwatch.unl.edu/on-farm-research

Funding and support for these projects was provided by Kinze, Pioneer, BASF and a USDA National Institute of Food and Agriculture Food Security Program grant, award number 2016-68004-24769

Special thanks to our grower-cooperators that allow us to work in their fields!

NEBRASKA EXTENSION