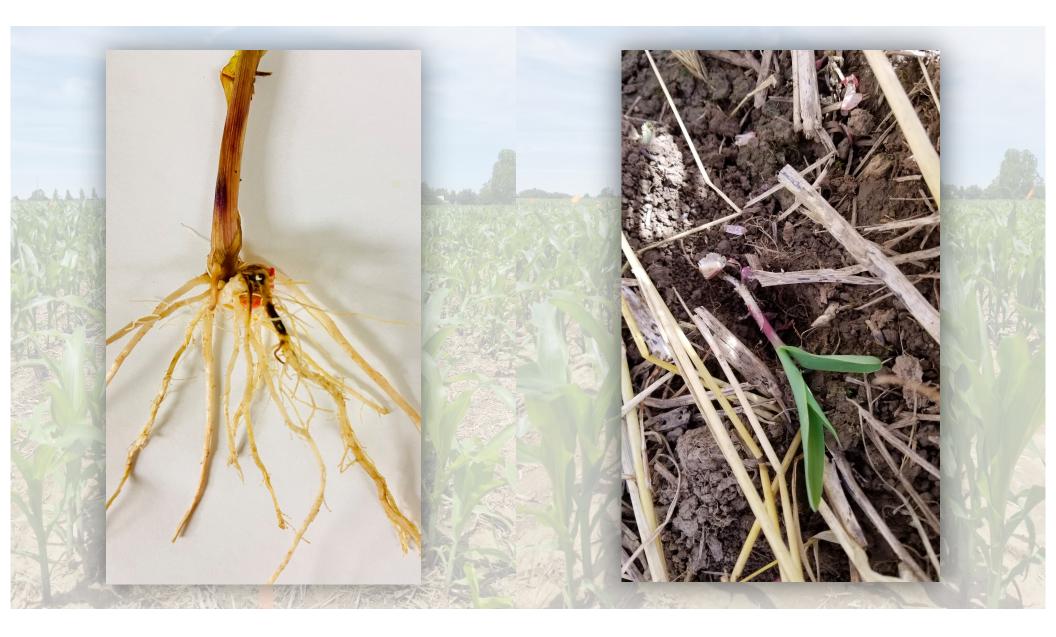
Corn Following a Rye Cover Crop – Can We Make it Work?

Dan Quinn, Ph.D. Extension Corn Specialist Assistant Professor of Agronomy Purdue University Email: <u>djquinn@purdue.edu</u> Web: thekernel.info

PURDUE UNIVERSITY | CORN EXTENSION

AGRONOMY



Farmers want to protect their soils. Rye is one of the most common species for cover crop in grain fields in the Midwest.

- Soil Erosion
- Nitrate Leaching
- Resistant Weed Populations
- Water Retention
- Soil Organic Matter

Rye Cover Corn Yield Reduction Causes

 <u>Corn Yield Reduction Observed</u>: (Raimbult et al., 1990; Duiker and Curran, 2005; Miguez and Bollero, 2006; Kaspar and Bakker, 2015; Pantoja et al., 2015; Martinez-Feria et al., 2016)

• Limited N Availability:

- **Rye N uptake** (Raimbult et al., 1991; Unger and Vigil, 1998; McSwiney et al., 2010; Krueger et al., 2011; Mirsky et al., 2015; Pantoja et al., 2015; Hill et al., 2016)
- N immobilization (Reeves, 1994; Kuo et al., 1997; Kuo and Jellum, 2002; McSwiney et al., 2010; Pantoja et al., 2015; Nevins et al., 2020)

<u>Reduced Plant Stand</u>:

- Disease (Smiley et al., 1992; Bakker et al., 2016; Acharya et al., 2017)
- Equipment Interference (Kaspar and Bakker, 2015; Marcillo and Miguez, 2017)
- Moisture Reduction (Eckert, 1988; Kaspar and Bakker, 2015; Marcillo and Miguez, 2017)
- Insects (Dunbar et al., 2016)

Rye Cover Corn Yield Reduction Causes

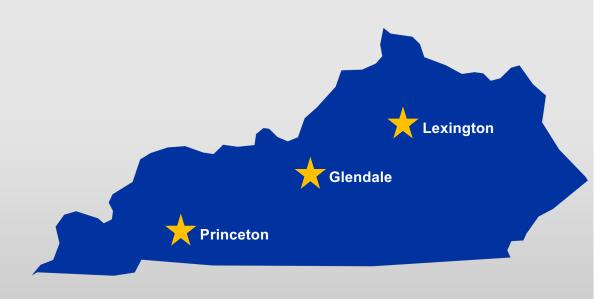
 <u>Corn Yield Reduction Observed</u>: (Raimbult et al., 1990; Duiker and Curran, 2005; Miguez and Bollero, 2006; Kaspar and Bakker, 2015; Pantoja et al., 2015; Martinez-Feria et al., 2016)

How do we manage this?

- N immobilization (Reeves, 1994; Kuo et al., 1997; Kuo and Jellum, 2002; McSwiney et al., 2010; Pantoja et al., 2015)
- <u>Reduced Plant Stand:</u>
 - Disease (Smiley et al., 1992; Bakker et al., 2016; Acharya et al., 2017)
 - Equipment Interference (Eckert, 1988; Kaspar and Bakker, 2015; Marcillo and Miguez, 2017)
 - Moisture Reduction (Eckert, 1988; Kaspar and Bakker, 2015; Marcillo and Miguez, 2017)
 - Insects (Dunbar et al., 2016)

Experimental Locations

Lexington, KY (2018, 2019, 2020)


- no-till, irrigated, following soybean
- Maury silt loam

Glendale, KY (2019, 2020)

- no-till, rainfed, following soybean
- Crider silt loam

Princeton, KY (2019, 2020)

- no-till, rainfed, following corn
- Crider silt loam

Research Questions

- 1. Is a higher corn N rate required to limit corn N stress and yield loss following a rye cover crop?
- 2. Is a split N application required to limit corn N stress and yield loss following a rye cover crop?
- 3. What role does an in-furrow starter (fertilizer and fungicide) have in improving corn emergence and yield following different rye cover crop termination timings?

Nitrogen Trial Factors

- Rye Cover Crop: 'Aroostook' cereal rye (drill-seeded 60 lbs A⁻¹) vs. no rye cover crop
 - Chemically terminated 14-21 days prior to corn planting.

• Nitrogen Fertilizer Timing:

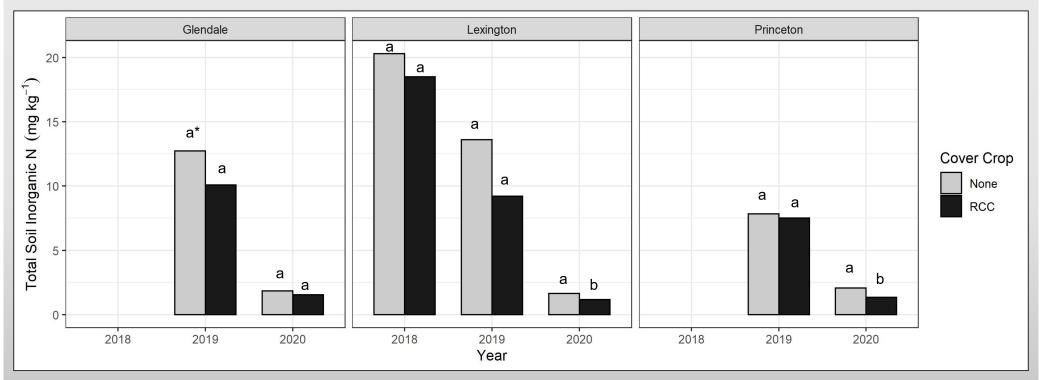
- 30 lbs N A⁻¹ applied in a 2x2 starter + remaining N surfacebanded pre-plant (Pre-plant).
- 30 lbs N A⁻¹ applied in a 2x2 starter + remaining N surfacebanded at V6 (Split).
- Nitrogen Fertilizer Rate: 0, 30, 90, 150, 210, 270 lbs N A⁻¹

Cover Crop Shoot Biomass Data

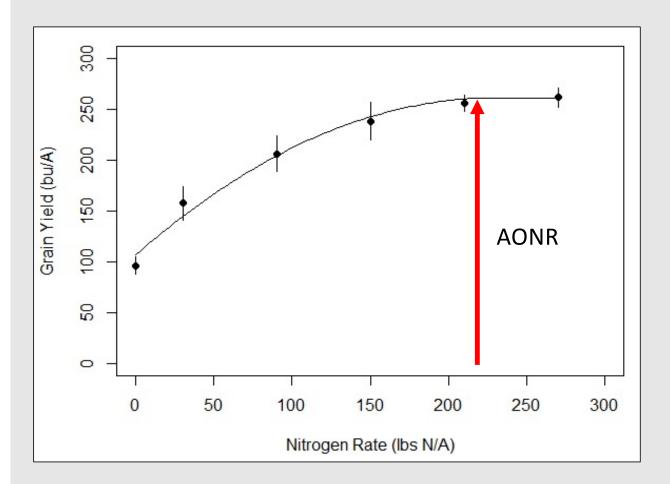
Location	Year	Total Biomass	Total C	Total N	C:N Ratio
		lbs A ⁻¹	lbs C A ⁻¹	lbs N A ⁻¹	C:N
Glendale	2019	2273			
	2020	1555			
Lexington	2018	432			
	2019	2143			
	2020	3157			
Princeton	2019	321			
	2020	1347			

Cover Crop Shoot Biomass Data

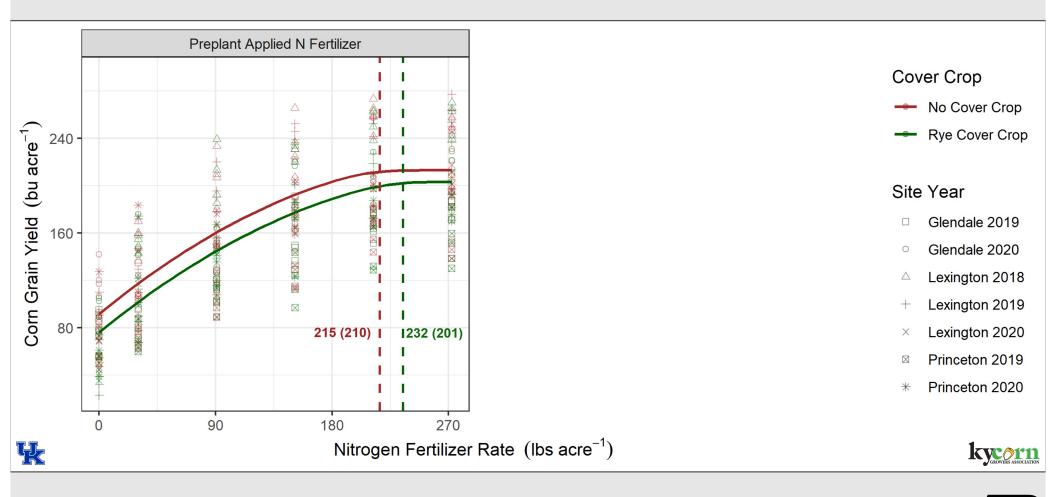
Location	Year	Total Biomass	Total C	Total N	C:N Ratio
		lbs A ⁻¹	lbs C A ⁻¹	lbs N A ⁻¹	C:N
Glendale	2019	2273	965	49	20
	2020	1555	651	24	25
Lexington	2018	432	175	12	15
	2019	2143	885	46	20
	2020	3157	1365	40	35
Princeton	2019	321	134	9	15
	2020	1347	555	21	27

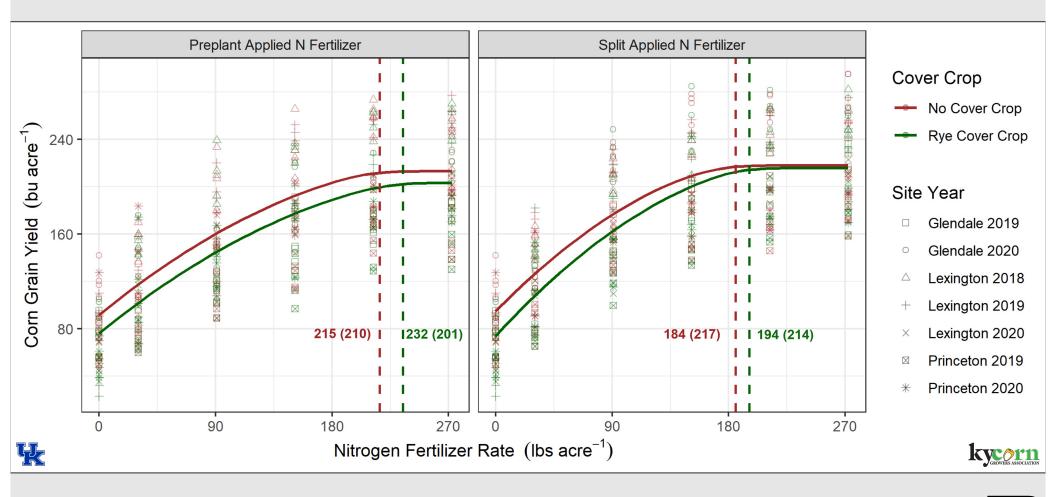

Rye Cover Crop Reduced Preplant Soil Inorganic N (0-12 in)

*Bars within each location and year followed by the same letter are not significantly different at α =0.1

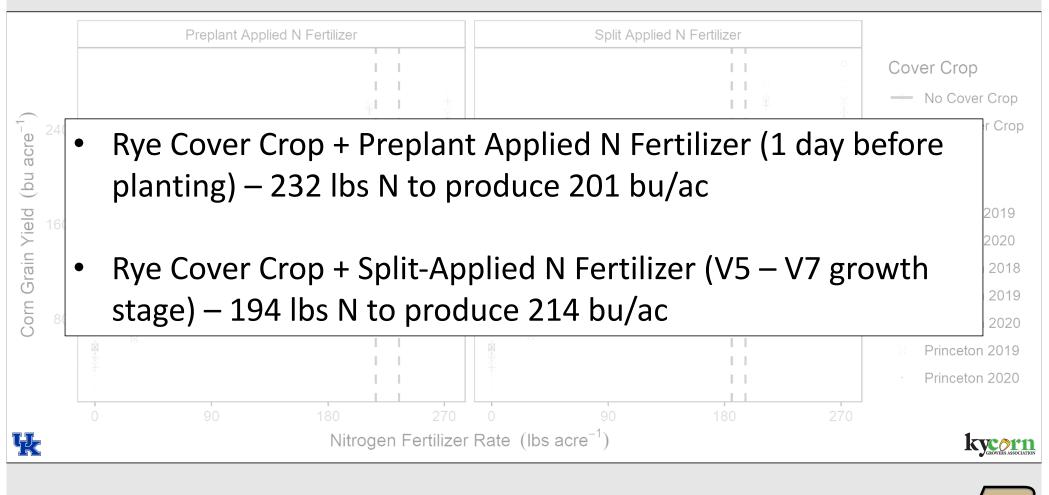


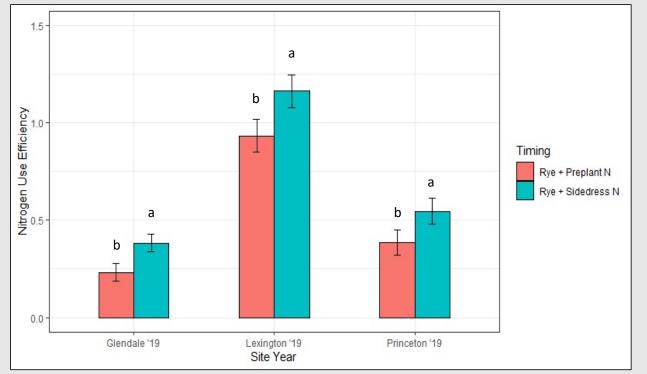
Rye Cover Crop Reduced Preplant Soil Inorganic N (0-12 in)


*Bars within each location and year followed by the same letter are not significantly different at α =0.1



Nitrogen fertilizer rate required by corn to reach maximum grain yield





Split N applications improve corn nitrogen use efficiency following a rye cover crop

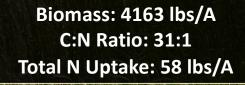
NUE = (Yield of treatment – Yield of ON check) / Nitrogen rate applied

Pounds of N Required to produce 1 bushel of grain

*Bars followed by the same letter within each site-year are not significantly different from each other at α =0.1

Take Home Points

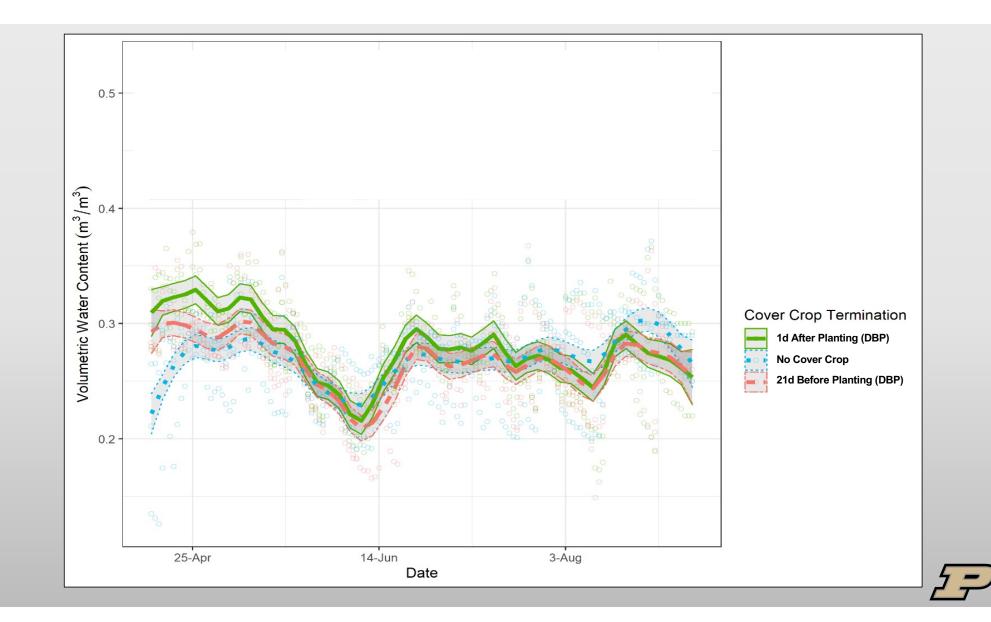
- A rye cover crop can reduce preplant soil inorganic N, R1 ear leaf chlorophyll content (greenness), and corn yield
- Split application of N fertilizer has potential to reduce N stress, improve corn N use efficiency, and lower the agronomic optimum N rate compared to N applied at planting.

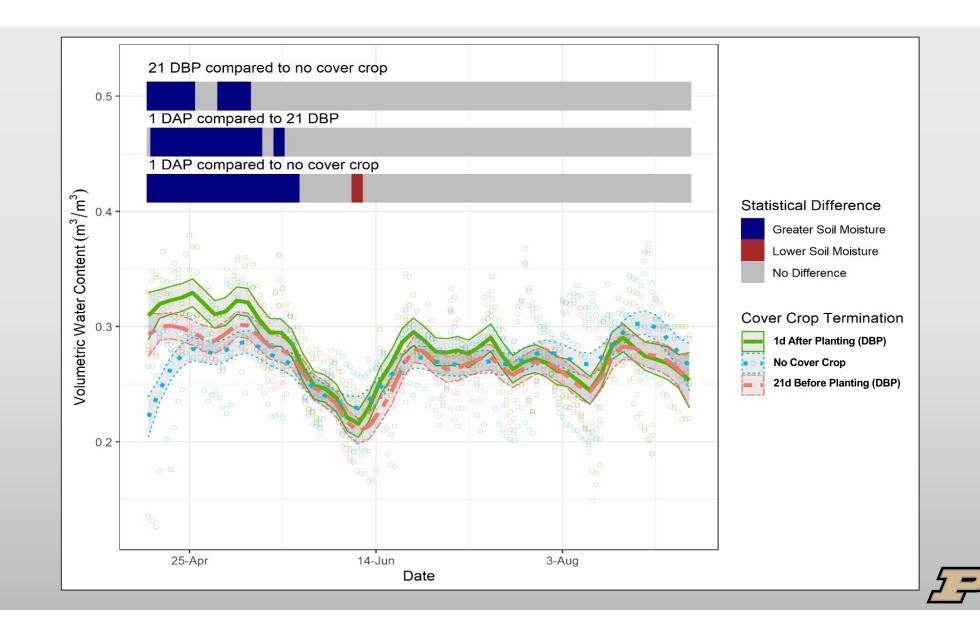


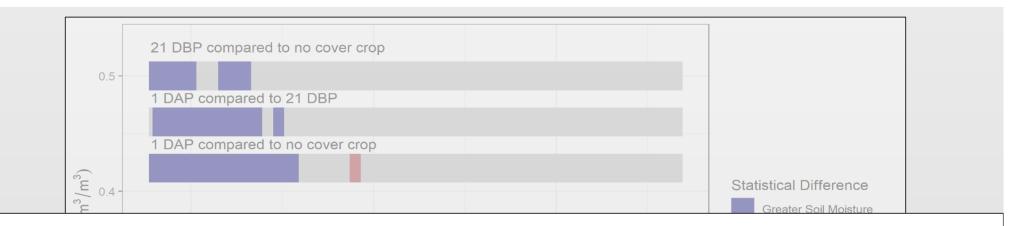
Does an in-furrow starter (fertilizer and/or fungicide) provide a greater benefit to corn following a delayed termination rye cover crop?

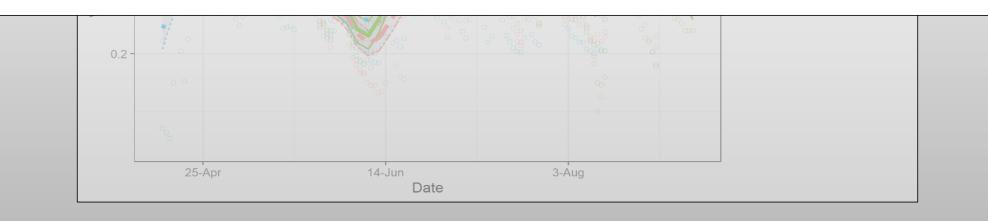
Biomass: 1639 lbs/A C:N Ratio: 21:1 Total N Uptake: 31 lbs/A

Termination Date Trial Factors


- Rye Cover Crop Termination: 'Aroostook' cereal rye (drill-seeded 60 lbs A⁻¹) vs. no rye cover crop
 - Chemically terminated 14-21 days prior to corn planting.
 - Chemically terminated 1 day after corn planting.


• In-Furrow Starter:


- 10-34-0 Fertilizer Alone (5 gal A⁻¹)
- Headline Fungicide Alone (12 oz A⁻¹)
- 10-34-0 Fertilizer + Headline Fungicide



The later a rye cover crop was terminated and the greater the biomass produced = the greater the early-season soil moisture levels observed in the corn rooting zone (4 in depth)

Treatment	Lexington	Glendale	Princeton
	Corn Grain Yield (bu A ⁻¹)		
No Cover Crop	255.9 a	245.6 a	181.4 a
14-d Prior to Corn Plant Term.	253.8 a	233.6 a	166.2 b
1-d After Corn Plant Term.	218.9 a	186.1 b	162.2 b
No In-Furrow	248.3 a	226.5 a	170.3 a
In-Furrow Fert. (10-34-0)	243.3 a	222.7 a	171.5 a
In-Furrow Fung. (Pyraclostrobin)	240.7 a	223.8 a	169.3 a
IF Fert. + Fung.	239.3 a	214.1 a	168.6 a

*Column values followed by the same letter are not significantly different at $\alpha\text{=}0.1$

Treatment	Lexington	Glendale	Princeton
	Corn Plant Stand (plants A ⁻¹)		
No Cover Crop	36643 a	35957 a	36482 a
14-d Prior to Corn Plant Term.	36804 a	35225 a	35635 a
1-d After Corn Plant Term.	27279 b	23359 b	35292 a
No In-Furrow	33988 a	32290 a	35224 a
In-Furrow Fert. (10-34-0)	32700 a	30976 a	36354 a
In-Furrow Fung. (Pyraclostrobin)	34038 a	31183 a	35789 a
IF Fert. + Fung.	33576 a	31606 a	35843 a

*Column values followed by the same letter are not significantly different at $\alpha\text{=}0.1$

Trial Conclusions

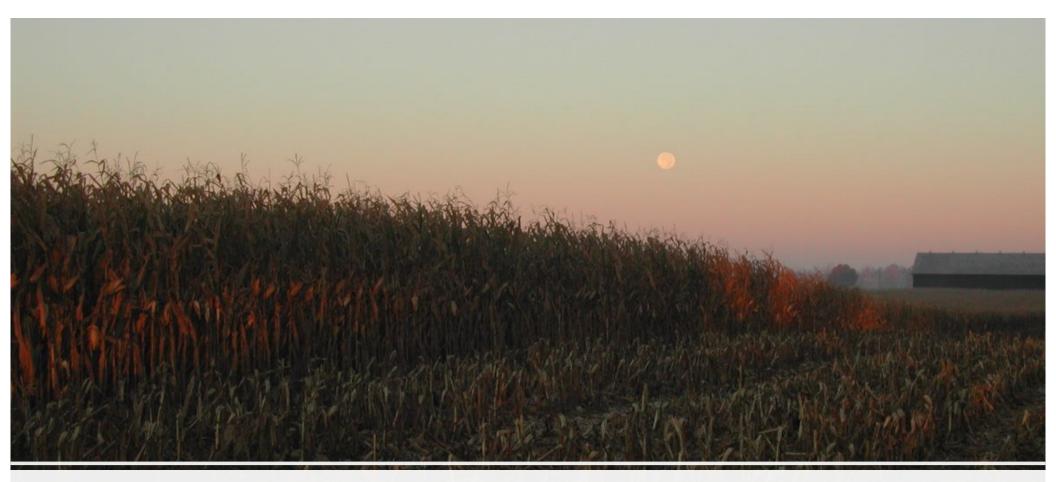
- A late-terminated rye cover crop (1 DAP) can increase biomass contributions and early-season soil moisture.
- However, a late terminated rye cover crop can also reduce corn plant stand and yield.
 - Shading after termination
- An in-furrow application of fertilizer and/or fungicide cannot ameliorate negative effects of a late-terminated rye cover crop.
 - In-furrow does not supply enough N
 - Need to target Pythium (seed treatments)
- Future research required corn planter settings and equipment

Rye Cover Crop Research Summary

- Split-N application more beneficial when corn follows rye
 - How N is applied and when N is applied is important for reducing rye yield penalty
- In-furrow fertilizer + fungicide did not provide a benefit to corn following a rye cover crop
- Delayed rye cover crop termination reduced corn yield by an average of 28 bu/A relative to early rye termination

What's Next? (Purdue University)

- Additional and delayed nitrogen fertilizer timings (V10-12)
- What about sulfur?
- What about hybrid type?
- Planter technologies?
- Different cover crops?


Acknowledgements

- Kentucky Corn Promotion Council
- Chad Lee
- Hanna Poffenbarger
- Kiersten Wise
- Edwin Ritchey
- Carl Bradley
- James Dollarhide
- Julia Santoro
- Richard Preston
- Josh Duckworth

College of Agriculture, Food and Environment Grain and Forage Center of Excellence

Thank you!

Questions?

Dan Quinn, Ph.D. Assistant Professor of Agronomy Extension Corn Specialist Purdue University

PURDUE UNIVERSITY | CORN EXTENSION

WWW.THEKERNEL.INFO

Ph: (765)494-5314 Email: <u>djquinn@purdue.edu</u> Web: thekernel.info Twitter: @PurdueCorn

PURDUE A G R I C U L T U R E A G R O N O M Y

